Quantos ATPs são produzidos no total a partir de 1 molécula de glicose?

Bacharel em Ciências Biológicas (UNITAU, 2012)
Pós-graduação Lato Sensu em Perícia Criminal (Grupo Educacional Verbo Jurídico, 2014)

Ouça este artigo:

A respiração aeróbica ou aeróbia se trata dos processos bioquímicos que visam à obtenção de energia com o envolvimento do oxigênio nas reações, como ocorre em diversos eventos da fosforilação oxidativa.

A energia, que é o produto final dessas reações, é proveniente da molécula de ATP, adenosina trifosfato. O ATP é uma molécula “relativamente” simples composta pela base nitrogenada adenina, açúcar e três fosfatos. A energia que tanto se fala é oriunda, justamente, das duas ligações que unem os fosfatos. Elas são ligações de alta energia que, quando necessário para alguma função ou reação do corpo, são quebradas liberando energia suficiente para esses eventos.

A respiração aeróbica pode ser dividida em duas fases: uma fase anaeróbica e outra aeróbica. A fase anaeróbica é composta pela glicólise, que também ocorre na respiração anaeróbia. Essa etapa ocorre no citosol das células e se refere à transformação da glicose em ácido pirúvico ou piruvato. No decorrer dessas reações anaeróbicas, a molécula de adenosina difosfato, ou ADP, recebe um fosfato gerando, assim, o ATP. Mais especificamente, ao fim dessas reações ocorreu o consumo e a produção de energia, sendo assim é possível afirmar que o saldo das reações é a produção de duas moléculas de ATP e outras duas de piruvato para cada molécula de glicose.

Após a etapa anaeróbica ocorre a etapa aeróbica. Os piruvatos produzidos migram para as mitocôndrias onde ocorrerá a outra fase do processo respiratório: a fosforilação oxidativa. Veja bem, a fosforilação oxidativa se trata de uma série de eventos que, grosso modo, realizam a degradação do ácido pirúvico até que se formem água e gás carbônico. Esse evento possui alto rendimento, resultando em um saldo de 36 moléculas de ATP para cada molécula de glicose. Isso quer dizer que, enquanto a respiração anaeróbica gera apenas dois ATPs, a aeróbica acaba gerando 36 além dos dois gerados pela glicólise.

Vale ressaltar que essas reações que ocorrem na mitocôndria não dependem, exclusivamente, da quebra da glicose (evento anaeróbico). O piruvato, produto da glicolise, pode ser substituído, e frequentemente o é, por ácidos graxos. Isso ocorre porque o acido pirúvico é utilizado para formar um composto denominado Acetil Coenzima A ou Acetil CoA. Nesse sentido, a Acetil CoA também pode ser produzida pela degradação de ácidos graxos por uma reação denominada β oxidação.

Enfim, a respiração celular aeróbica se trata dos eventos que geram energia utilizando o oxigênio, existindo no processo uma etapa em que esse elemento não é utilizado. É uma estratégia de obtenção de energia altamente eficiente e representa um dos motivos que possibilitaram o surgimento de seres tão complexos como se é visto hoje em dia. Isso se faz verdadeiro porque o rendimento energético da respiração anaeróbica seria insuficiente para suprir as necessidades dessas formas de vida.

Texto originalmente publicado em https://www.infoescola.com/bioquimica/respiracao-aerobica/

A glicólise é um processo que degrada a glicose em duas moléculas menores, sendo essencial para a produção de energia dos organismos. Ela é dividida em duas fases, uma de investimento energético e a outra de compensação energética. Ao final das duas etapas, o saldo é de duas moléculas de ATP e duas moléculas de NADH. Tudo isso é realizado no citosol das células.

Leia mais: Quimiossíntese – produção de energia por meio de compostos inorgânicos

Quantos ATPs são produzidos no total a partir de 1 molécula de glicose?
A glicose é degradada no processo de glicólise para a obtenção de energia.

A glicólise é o processo de oxidação da glicose (carboidrato), principal fonte energética dos seres vivos, que utilizam essa molécula para o funcionamento adequado do metabolismo.

Esse processo divide uma molécula de glicose, que é constituída por seis átomos de carbono, em duas moléculas de piruvato, com três carbonos cada. Isso ocorre em duas etapas, no citosol dos organismos procarióticos e eucarióticos: a primeira etapa ocorre com gasto de energia e é denominada de investimento energético; já a segunda, denominada de compensação energética, repõe o que foi consumido e ainda produz mais duas moléculas de ATP.

A importância da glicólise

A glicose é produzida pelos organismos autótrofos e transferida aos heterótrofos por meio das cadeias alimentares. No entanto, para que essa energia seja aproveitada pelos organismos, essa molécula precisa ser degradada por meio da glicólise, que é a via metabólica comum a todos os seres vivos, em que ocorre a decomposição parcial dessas moléculas na presença ou ausência de oxigênio. Ao passo que a molécula de glicose é degradada, a energia liberada é armazenada nas ligações fosfoanídricas de ATP.

Nos organismos que fazem respiração celular, após a glicólise, ocorrem novas etapas até a degradação total da glicose e há um maior aproveitamento energético, com a produção de 32 moléculas de ATP.

Nos organismos que realizam processos anaeróbicos, como a fermentação, a glicólise é  o único processo de degradação da glicose, tendo um aproveitamento energético menor, de apenas dois ATP. Além da produção de ATP, a glicólise é também responsável pela produção de precursores de compostos como ácidos graxos no fígado.

Leia também:  Diferenças entre as células animais e vegetais

Não pare agora... Tem mais depois da publicidade ;)

Etapas da glicólise

A glicólise é um processo que ocorre por meio de uma série de 10 reações divididas em duas etapas, que serão descritas a seguir:

→ 1ª etapa

Essa etapa, conhecida também por fase preparatória ou fase de investimento, consiste em cinco reações:

1. Ocorre a fosforilação da molécula de glicose, em que ela recebe fosfato proveniente da molécula de ATP, formando glicose 6-fosfato;

2. A molécula glicose 6-fosfato sofre um rearranjo e forma frutose 6-fosfato;

3. Outra molécula de ATP fornece fosfato à molécula de frutose 6-fosfato, dando origem à frutose 1, 6 -difosfato;

4. A molécula de frutose 1, 6- difosfato sofre um rearranjo, com a abertura de seu anel benzeno, originando duas moléculas com três carbonos cada uma: gliceraldeído 3-fosfato e di-hidroaxetona fosfato;

5. A molécula de di-hidroaxetona sofre um rearranjo dando origem a outra molécula de  gliceraldeído 3-fosfato.

Pode-se observar que ao final dessa primeira fase, houve apenas gasto de energia, com  a conversão de duas moléculas de ATP em ADP.

→ 2ª etapa

Essa etapa, também conhecida como fase de lucro ou compensação energética, ocorre o ganho energético e também é constituída por cinco etapas, descritas a seguir:

6. Duas moléculas de NAD+ (dinucleotídio nicotinamida e adenina) são reduzidas em duas moléculas de NADH com os elétrons provenientes da oxidação de  gliceraldeído 3-fosfato em 1,3 -difosfoglicerato;

7. Cada molécula de 1,3 – difosfoglicerato cede um fosfato a uma molécula de ADP originando, assim, duas molécula de ATP e duas molécula de 3 – fosfoglicerato;

8. Ocorre um rearranjo das moléculas de 3 – fosfoglicerato, formando 2 – fosfoglicerato;

9. As moléculas de 2 – fosfoglicerato perdem uma molécula de H2O, originando o fosfoenolpiruvato;

10. As moléculas de fosfoenolpiruvato fornecem um fosfato a uma molécula de ADP, originando duas moléculas de ATP e duas de piruvato.

O saldo energético da segunda fase da glicólise são duas moléculas de NADH e quatro moléculas de ATP.  Assim, o saldo final da glicólise, será de duas moléculas de piruvato, duas moléculas de NADH e duas moléculas de ATP, produzidas a partir de uma molécula de glicose.

Fermentação e respiração celular

Após as etapas da glicólise, dependendo da presença ou ausência de oxigênio, o processo de produção de energia segue mediante realização de processos, como a fermentação e a respiração celular.

Na fermentação, um processo anaeróbio (ocorre sem a presença de oxigênio), o piruvato permanece no citosol, recebe os elétrons do NADH, reciclando o NAD+, que pode ser utilizado novamente na glicólise, e dando origem a um novo produto, dependendo do tipo de organismo que realiza esse processo (lactato ou etanol e dióxido de carbono).

O saldo energético final da fermentação é de 2 ATP. Já na respiração celular, um processo aeróbio (ocorre na presença de oxigênio), o piruvato entra nas mitocôndrias dando sequência a uma série de reações e apresentará um saldo energético final de 32 moléculas de ATP.

Saiba mais: Organismos aeróbios e anaeróbios: conheça as diferenças entre eles

Equação da glicólise

Quantos ATPs são produzidos no total a partir de 1 molécula de glicose?
O processo de respiração celular dá continuidade à degradação da glicose no interior da mitocôndria.

O processo de glicólise pode ser resumido na equação apresentada a seguir:

Glicose + 2 NAD+ +2ADP + 2Pi → 2 Piruvato + 2NADH + 2H+ +2ATP +2 H2O

Por Helivania Sardinha dos Santos

Quantos ATP produz uma molécula de glicose?

A molécula instável de glicose, quando se quebra, forma duas moléculas de ácido pirúvico e gera quatro moléculas de ATP.

Qual o saldo de ATPs produzidos a partir de uma única molécula de glicose durante a respiração celular identifique a origem de cada uma delas?

Para cada molécula de glicose que entra na cadeia respiratória, formam-se 30 ou 32 ATP. Isso porque são necessários 2 NADH para formar 5 ATP e 2 FADH2 para formar 3 ATP na cadeia respiratória. Assim, cada NADH produz 2,5 ATP e cada FADH2 produz 1,5 ATP.

Quantos ATP e NADH 1 molécula de glicose gera?

Para cada molécula de glicose, são gerados: Na Glicólise: 2 ATPs; No Ciclo de Krebs: 2 ATPs; Na Cadeia Respiratória: 26 ATPs.

Quantos ATPs são produzidos na glicólise para cada molécula de glicose oxidada?

Para cada molécula de glicose, dois ATP são consumidos na fase preparatória e quatro ATP são produzidos na fase de pagamento, dando um rendimento líquido de dois ATP por molécula de glicose convertida em piruvato.